Stronger Automation for Flyspeck by Feature Weighting and Strategy Evolution

نویسندگان

  • Cezary Kaliszyk
  • Josef Urban
چکیده

Two complementary AI methods are used to improve the strength of the AI/ATP service for proving conjectures over the HOL Light and Flyspeck corpora. First, several schemes for frequency-based feature weighting are explored in combination with distanceweighted k-nearest-neighbor classifier. This results in 16% improvement (39.0% to 45.5% Flyspeck problems solved) of the overall strength of the service when using 14 CPUs and 30 seconds. The best premise-selection/ATP combination is improved from 24.2% to 31.4%, i.e. by 30%. A smaller improvement is obtained by evolving targetted E prover strategies on two particular premise selections, using the Blind Strategymaker (BliStr) system. This raises the performance of the best AI/ATP method from 31.4% to 34.9%, i.e. by 11%, and raises the current 14-CPU power of the service to 46.9%.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Feature Weighting and Strategy Evolution

Two complementary AI methods are used to improve the strength of the AI/ATP service for proving conjectures over the HOL Light and Flyspeck corpora. First, several schemes for frequency-based feature weighting are explored in combination with distanceweighted k-nearest-neighbor classifier. This results in 16% improvement (39.0% to 45.5% Flyspeck problems solved) of the overall strength of the s...

متن کامل

A Novel Scheme for Improving Accuracy of KNN Classification Algorithm Based on the New Weighting Technique and Stepwise Feature Selection

K nearest neighbor algorithm is one of the most frequently used techniques in data mining for its integrity and performance. Though the KNN algorithm is highly effective in many cases, it has some essential deficiencies, which affects the classification accuracy of the algorithm. First, the effectiveness of the algorithm is affected by redundant and irrelevant features. Furthermore, this algori...

متن کامل

Overlap-based feature weighting: The feature extraction of Hyperspectral remote sensing imagery

Hyperspectral sensors provide a large number of spectral bands. This massive and complex data structure of hyperspectral images presents a challenge to traditional data processing techniques. Therefore, reducing the dimensionality of hyperspectral images without losing important information is a very important issue for the remote sensing community. We propose to use overlap-based feature weigh...

متن کامل

A Co-evolutionary Framework for Nearest Neighbor Enhancement: Combining Instance and Feature Weighting with Instance Selection

The nearest neighbor rule is one of the most representative methods in data mining. In recent years, a great amount of proposals have arisen for improving its performance. Among them, instance selection is highlighted due to its capabilities for improving the accuracy of the classifier and its efficiency simultaneously, by editing noise and reducing considerably the size of the training set. It...

متن کامل

Modified Pareto archived evolution strategy for the multi-skill project scheduling problem with generalized precedence relations

In this research, we study the multi-skill resource-constrained project scheduling problem, where there are generalized precedence relations between project activities. Workforces are able to perform one or several skills, and their efficiency improves by repeating their skills. For this problem, a mathematical formulation has been proposed that aims to optimize project completion time, reworki...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013